EP 0 680 185 A2

Europadisches Patentamt
a European Patent Office

Office européen des brevets

L

(D Publication number:

AT

0 680 185 A2

® EUROPEAN PATENT APPLICATION

@) Application number: 95105803.1

® Date of filing: 19.04.95

@ mnt.c15: HO4AL 29/06

®) Priority: 28.04.94 US 233908

@) Date of publication of application:
02.11.95 Bulletin 95/44

Designated Contracting States:
DEESFRGBIT

@ Applicant: THOMSON CONSUMER
ELECTRONICS, INC.
10330 North Meridian St.
Indianapolis, IN 46206 (US)

@ Inventor: Joseph, Kuriacose

Venice,

California 90291 (US)

Inventor: Jessup, Ansley Wayne, Jr.
22 Eimwood Lane

Willingboro,

New Jersey 08046 (US)

Inventor: Delpuch, Alain

2221 Parnell Avenue

Los Angeles,

Callfornia 80064 (US)

Representative: Wordemann, Hermes,

818 Ravens Crest Drive Dipl.-Ing.

Plainsboro, Deutsche Thomson-Brandt GmbH,
New Jersey 08543 (US) Patent Dept.,

Inventor: Dureau, Vincent Gottinger Chaussee 76

219 Sherman Canal

D-30453 Hannover (DE)

& A distributed computer system.

@ A distributed computer system is disclosed
which comprises a source (30) of a continuous data
stream repestitively including data representing a dis-
tributed computing application and a client computer

(22), receiving the data stream, for extracting (207)
the distributed computing application representative
data from the data stream, and executing (224) the
extracted distributed computing application.

207~ AUX
MANPORT [g U T T &n — | DATA
uso%n_lsa__rj—>— AKX) PROCESSOR
STREAM [DATA
SELECTOR B~
— PACKET SXTRACT
I DATA
| EXTRACT
24 — — — —_—
24N o= = —_ =
STREAM
| 110
2185 4
[Jpiicoe Sm— i AL O {
| PROCESIOR RAM ROM
z
FG 4

Rank Xerox (UK) Business Services
13.1073.09/3.3.4)

AdOD F1EVTIVAY [€3a

1 EP 0 680 185 A2 2

The present invention relates to a client-server
distributed computer system. Such a computer
systeam has application in broadcast multimedia
applications.

Early computer systems were standalone sys-
tems, consisting generally of mainframe comput-
ers. Later, several mainframe computer systems
were closely connected, or clustered, to handle
larger computing jobs, such as a large number of
time sharing users. With the advent of personal
computers, large numbers of relatively low power
standalone computer systems were controlled di-
rectly by their users. Soon these large numbers of
personal computers were coupled together into
networks of computers, providing shared resources
and communications capabilities to the users of the
individual personal computers and between those
users and the preexisting mainframe computers.

One form of such a network includes a central
computer, called a server, which generally includes
a large amount of mass storage. Programs used by
the network users are centrally stored in the mass
storage on the server. When a user desires to run
a program, the user's computer requests that a
copy of that program be sent to it from the server.
In response to that request, the server transfers a
copy of the program from its mass storage to the
main memory of the personal computer of that
user, and the program executes on that personal
computer. Data also may be centrally stored in the
server and shared by all the users on the network.
The data is stored on the mass storage of the
server, and is accessible by all the network users
in response to a request. The server also serves as
a hub for communications of messages (electronic
mail) between network users The server in such a
system handles the storage and distribution of the
programs, data and messages, but does not contri-
bute any processing power to the actual computing
tasks of any of the users. l.e. a user cannot expect
the server computer to perform any of the process-
ing tasks of the program executing on the personal
computer. While such networks perform a valuable
function, they are not distributed computing sys-
tems, in which interconnected computers cooperate
to perform a single computing task.

In an improvement to such networks, the net-
work may be configured in such a manner that a
user on the network may request that the server, or
other personal computer connected to the network,
execute a program. This is termed remote execu-
tion because a computer (server or other personal
computer) remote from the requester is executing a
program in response to a request from the re-
quester. In such a system, the program of which
remote execution is requested is either sent from
the requester to the remote computer, or retrieved
from the server in response to a request by the

10

20

25

30

35

55

remote computer. When the program is received, it
is executed. In this manner several computers may
be enlisted to cooperate in performing a computing
function.

Recently, there have been programs which dis-
tribute the actual computing tasks necessary for
performing a single computing function. For exam-
ple, in such a data base program, where the data
base is stored in the mass storage of the server, if
a user desires to make a query of the data base,
the portion of the data base management program
on that user's personal computer will generate a
query request, which is forwarded to the server.
The portion of the data base management program
on the server performs the query processing, e.g.
parsing the query request, locating where the data
specified in the query request resides on its mass
storage device, accessing that data, and sending
the results back to the requesting personal com-
puter over the network. The portion of the data
base management program on the personal com-
puter then processes the data received from the
server, e.g. formatting it, and displaying it on the
screen or printing it on a printer. While the server
is processing the query request, the personal com-
puter is free to perform other processing, and while
the personal computer is generating the query re-
quest, and processing the resulting data received
from the server, the server is free to prbcess query
requests from other personal computers.

Other types of programs are also amenable to
this type of distributed computing, termed client-
server computing. The sharing of the processing
tasks between the personal computer and the serv-
er improves the overall efficiency of computing
across the network. Such client-server computer
systems, and remote execution networks, may be
termed distributed computing systems because
several computers (the server and/or the respective
peripheral computers) cooperate to perform the
computing function, e.g. data base management.

Recently, broadcast multimedia programs,
more specifically, interactive television (TV) pro-
grams, have been proposed. Interactive TV pro-
grams will allow a viewer of a television program to
interact with that program. In an interactive TV
system, the central broadcast location (TV network,
local TV studio, cable system, etc.) will have a
central computer, corresponding to the server com-
puter, which will produce signals related to the
interactive TV program to be broadcast simulta-
neously with the TV (video and audio) signals.
These signals carry data representing the inter-
active TV program and may include commands,
executable program code and/or data for control-
ling the viewer interaction. Each viewer location will
have a computer, corresponding to the client com-
puter, which will receive the commands, executable

3 EP 0 680 185 A2 4

code and/or data from the central computer, ex-
ecute the executable code, process the received
data, accept input from the user and provide data
to the user by means of the TV screen. The input
from the user may be sent back to the computer at
the broadcast location, allowing the user to interact
with the interactive TV program.

U.S. Patent 4,965,825, SIGNAL PROCESSING
APPARATUS AND METHODS, issued Oct. 23,
1990 to Harvey et al., describes an interactive TV
system in which a central broadcast location in-
cludes signals carrying commands, executable
code and data in, for example, the vertical blanking
interval of the television signal for receipt by the
computer systems at the viewer locations. A com-
puter at the viewer location extracts the commands,
executable code and data and executes the code
to process the data and interact with the user. Such
a system is comparable to the remote execution
function of distributed computer systems, de-
scribed above, in that the viewer computer is en-
listed into the interactive TV program, and is con-
trolled by the central location.

in all of the above systems, a central computer
controls or responds to requests from peripheral
computers attached to it through a network. l.e. the
peripheral computer (personal computer) requests
remote execution of a program, requests a file or
message from, or sends a query request to, an-
other computer. Only in response to a request
does the other computer provide a response, e.g.
remote execution, the requested file, message or
retrioved data. In addition, in general, the peripheral
computer is required to have all the resources
necessary to completely, or almost completely, ex-
ecute the desired program, with the server acting
only as another storage mechanism. or at most
sharing a portion of the computing tasks.

The inventors herein propose a distributed
computing system in which a server computer con-
tinuously produces a data stream. This data stream
acts a mass storage device for the client comput-
ers receiving it. This data stream repetitively in-
cludes data representing a distributed computing
application in which the client computer may par-
ticipate, including executable code and data. A
transport mechanism, including a high speed, one-
way, communication path, carries the data stream
from the server to the client. The client receives
the data stream, extracts the distributed computing
representative data and executes the distributed
computing application.

In accordance with principles of the present
invention, a distributed computer system comprises
a source of a continuous data stream repetitively
including data representing a distributed computing
application and a client computer, receiving the
data stream, for extracting the distributed comput-

15

20

25

30

35

45

50

55

ing application representative data from the data
stream, and executing the extracted distributed
computing application.

In a distributed computing system according to
the invention, the client computer system need not
include all the resources, in particular, main mem-
ory and mass storage, necessary to perform the
entire program. Instead, no mass storage is re-
quired because the data stream provides the func-
tion of the mass storage device, and the main
memory requirement is modest because only the
currently executing portion of the program need be
stored in memory. When the currently executing
portion has completed, its memory space is freed
up, and the next executing portion is extracted
from the data stream, stored in the freed memory
space, and that portion begins execution.

In addition, a distributed computing system ac-
cording 'to the present invention allows the user of
the client computer to have the option of participat-
ing in the distributed computing task. If it is desired
to participate, the client computer extracts the data
representing the distributed computing application
and executes the distributed computing application,
as described above. If it is desired not to partici-
pate, the data stream is merely ignored, and the
processing desired by the user, or none at all, is
performed. Such a distributed computing system
also allows each participating client computer to
join the distributed computing function at any time
and to proceed at its own pace in performing its
own computing function.

A distributed computing system according to
the present invention is particularly amenable to
interactive TV applications because it allows a
viewer to tune into an interactive TV channel at any
time, join in the interactivity whenever desired (or
not at all), and allows all the viewers to proceed at
their different paces. This is especially advanta-
geous in an environment when an interactive com-
mercial, with its own executable code and data,
may be presented within an interactive program, or
when the viewer wishes to change channels.

BRIEF DESCRIPTION OF THE DRAWING

In the drawing:
FIGURE 1 is a block diagram of a distributed
computing system according to the present in-
vention;

FIGURE 2 is a block diagram of a server com-
puter as illustrated in FIGURE 1;

FIGURE 3 is a timing diagram illustrating the
data streams produced by a server computer in
a distributed computing system as iflustrated in
FIGURE 1;

FIGURE 4 is a block diagram of a client com-
puter as illustrated in FIGURE 1.

5 EP 0 680 185 A2 6

FIGURE 1 is a block diagram of a distributed
computing system according to the present inven-
tion. In FIGURE 1, a server computer 10, which
may include a large computer system, is coupled
to a plurality of client computers 20 through a
transport mechanism 30. The server computer 10
may be coupled to more than the three client
computers 20 illustrated in FIGURE 1, and the
client computers 20 may be geographically widely
dispersed. Client computer 22 is bidirectionally
coupled to a local computer 40, to an auxiliary data
processing system 50 and to a central processing
facility 60. The central processing facility 60 is
bidirectionally coupled to the server computer 10.
The central processing facilty 60 may also be
connected to facilities other than the server com-
puter 10 illustrated in FIGURE 1. The local com-
puter 40 is further bidirectionally coupled to a mass
storage device 70. The client computer 22 interacts
with a user 80 by providing information to the user
via a display screen or other output device (not
shown) and by accepting information from the user
via a keyboard or other input device (also not
shown).

Client computers 24 and 26 also interact with
their users, (not shown in order to simplify the
drawing). In addition, client computers 24 and 26
are bidirectionally coupled to the central process-
ing facility 60. Such links are optional, however.
The only requirements for any client computer 20
is a way to interact with a user, and a connection to
the transport mechanism 30. Links to local comput-
ers, auxiliary data processing systems, and the
central processing facility 60 are all optional, and
nesd not be present in every one of the client
computers 20.

The transport mechanism 30 includes a un-
idirectional high speed digital data link, such as a
direct fiber optic or digital satellite link from the
server 10 to the client computers 20. The data may
be transported over the transport system 30 by a
packet data system. In such a system, a stream of
data packets, each including identification informa-
tion indicating, among other things, the type of data
contained in that packet and the actual data, is
transmitted through the data link. Such a packet
data system allows several independent streams of
data, each identified by identification information in
their packets, to be time multiplexed within a single
stream of packets.

In addition, it is possible to multiplex a plurality
of such packet data streams over respective chan-
nels on the same physical medium (fiber optic or
satellite radio link) making up the transport mecha-
nism 30. For example, different data streams may
be modulated on carrier signais having different
frequencies. These modulated carriers may be
transmitted via respective transponders on a sat-

10

20

25

30

35

55

ellite link, for example. Further, if a particular tran-
sponder has sufficient capacity, it is possible to
time multiplex several data streams on a single
modulated carrier.

The client computers 20 each contain a data
receiver for selecting one of the streams of packets
being transported over the transport mechanism
30, receiving the selected stream of packets and
extracting the data contained in them. Continuing
the above example, the data receiver may include
a tunable demodulator for receiving one of the
respective modulated carriers from the satellite link.
In addition, the data receiver may include circuitry
for time demultiplexing the respective data streams
being carried by that modulated carrier.

In operation, the server 10 produces a continu-
ous data stream in the form of a stream of packets
for the client computers 20. The server 10 repet-
itively inserts a packet, or successive packets, con-
taining data representing the distributed computing
application, including at least one executable code
module, into the data stream. This code module
contains executable code for the client computers
20. The data receiver in, for example, client com-
puter 22, continuously monitors the packets in the
data stream on transport mechanism 30. When a
packet including identification information indicating
that it contains the code module (or a portion of the
code module) required by the client computer 22 is
present in the data stream, the client computer 22
detects its presence, extracts the code module (or
the portion of the code module) from that packet
and stores it in the main memory. When the code
module is completely received, the client computer
22 begins to execute it.

There may be more than one code module
placed in the continuous data stream, each contain-
ing a different portion of the distributed computing
application. For example, it is possible to divide the
distributed computing application into small por-
tions in such a manner that only one portion at a
time need be executed at a time. The portion of
the distributed computing application currently
needed to execute is loaded into the memory of
the client computer 22. When that portion has
completed its execution, then a code module con-
taining the executable code for the next portion of
the distributed computing application is extracted
from the data stream, stored in memory and ex-
ecuted. Each portion is extracted from the data
stream as needed. If there is sufficient memory in
the client computer 22, it is possible to load several
code modules into the memory and switch be-
tween them, without extracting them from the data
flow, but this is not necessary. By structuring a
distributed computing application in this manner,
the required memory size of the client computer 22
may be minimized

7 EP 0 680 185 A2 8

The server 10 may also repstitively include a
packet or packets containing one or more data
modules in the data stream. The data modules
contain data to be processed by the exscutable
code in the code module. Prior to, or during the
execution of the code from a previously extracted
code module, the client computer 22 may require
access to the data in the data module or modules.
i so, the client computer 22 monitors the data
stream for the required data module or modules.
When packets containing the data module or mod-
ules (or portions of the data module or modulses)
are present in the data stream, they are extracted,
and the contents stored in the main memory of the
client computer 22. When all the required data
modules have been completely received, the client
computer 22 begins or continues execution of the
code from the code module to process the data
from the received data module or modules. As is
the case for code modules, it is possible for more
than one data module to be stored in memory, if
there is sufficient memory in client computer 22.

The server 10 may further repetitively include
in the data stream a packet or packets containing a
directory of the code and data modules currently
being included in the data stream. The directory
includes a list of all the code and data modules
which are present in the data stream, along with
information about those modules. If a directory is
present in the data stream, then, prior to extraction
of any code or data modules from the data stream,
the client computer 22 monitors the data stream for
the directory. When packets containing the direc-
tory (or portions of the directory) are present in the
data stream, they are extracted, and their data
stored in the main memory of the client computer
22. When the directory has been completely re-
ceived, the client computer 22 evaluates the entries
in the directory, then requests the first code and/or
data module from the data stream and execution
proceeds as described above.

Any of the client computers 20 may join the
distributed computing function represented by the
packet stream at any time, and each of the client
computers 20 may operate at its own speed, gen-
erally in response to the user 80. In order to allow
for this, the server 10 repetitively places the direc-
tory and all the code and data modules which the
client computers 20 may require to perform their
portion of the distributed computing function into
the data stream on the transport mechanism 30.
Whenever one of the client computers 20 joins the
distributed computing function, it monitors the new-
ly selected packet stream on the transport mecha-
nism 30 for the directory module, extracts it, and
processes it as described above. During execution,
whenever one of the client computers 20 requires
the a new code and/or data module, it monitors the

10

15

20

25

30

35

45

55

data stream on the transport mechanism 30 for the
newly required code and/or data module, extracts it
and either executes it, if it is a code module, or
processes it if it is a data module, as described
above.

The packet data stream may also include pack-
ets of auxiliary data. This data is not required by
the client computer 22 for execution of the code,
although it may be related to the execution be-
cause the user 80 may interact with the executing
program on the client computer 22 based on re-
ceived auxiliary data. The data stream receiver in
the client computer 22 recognizes the auxiliary
data packets in the data stream on the transport
mechanism 30 and passes them directly to the
auxiliary data processor 50. The auxiliary data pro-
cessor 50 processes its packets independently of
the client computer 22. If the auxiliary data must be
presented to the user 80, the auxiliary data proces-
sor 50 may provide its own display device (not
shown) which may be shared with the client com-
puter 22, or the display device (not shown) asso-
ciated with the client computer 22 may be shared
with the auxiliary data processor 50, to provide a
single information display to the user 80. The auxil-
iary data processor 50 may have links to other
illustrated elements (not shown), but that is depen-
dent upon the type of data.

In an interactive TV system, for example, the
auxiliary data includes the video and audio portions
of the underlying television signal. For example, the
auxiliary data would include video packets contain-
ing MPEG, or MPEG-like, encoded data represent-
ing the television image and audio packets contain-
ing digitally encoded audio. Further, there may
possibly be several different audio packet streams
carrying respective audio channels for stereo, sec-
ond audio program (SAP) or multilanguage capabil-
ity. In an auxiliary data processor 50 in such a
system, the video packets would be supplied to a
known MPEG (or similar) decoder (not shown)
which would generate standard video signals,
which would be supplied to a television receiver or
video monitor (not shown). The audio packets
would be supplied to a known audio decoder (not
shown) which would generate standard audio sig-
nals for the television receiver or speakers (not
shown).

In such an interactive TV system, the client
computer 22 may, in response to execution of the
executable code module, generate graphic displays
to supply information to the user 80. These graphic
displays may be combined with the standard video
signal from the MPEG decoder in a known manner,
and the combined image displayed on the televi-
sion receiver or video monitor. The client computer
22 may also generate sounds to provide other
information to the viewer. The generated sounds

9 EP 0 680 185 A2 10

may be combined, in known manner, with the stan-
dard audio signals from the audio decoder, and the
combined sound played through the television re-
ceiver or speakers.

Furthermore, time code data may be included
in either or both of the television auxiliary packet
data stream and the packet data stream represent-
ing the interactive TV application. This permits
synchronization of any graphic images or sounds
generated by the client computer 22 with the televi-
sion signal from the auxiliary data. In this case, the
client computer 22 would have access to the time
code data, and would control the generation of the
graphic image and/or sound to occur at the desired
time, as supplied by the time code data.

In such an interactive TV system, both the
client computer 22 and the auxiliary data processor
50 may be contained in a single enclosure, such as
a television receiver, or television set-top decoder
box. A television receiver, or decoder box would
include connectors for attaching to a local com-
puter or other equipment.

The user 80 provides input to the program
running on the client computer 22 during its execu-
tion. This data may be required by the server 10 in
order to effect the distributed computing function.
In an interactive TV system, for example, user 80
may provide input to the client computer through a
handheld remote control unit.

The user data is transferred to the server com-
puter 10 via the central processing facility 60. In
one embodiment, data is sent from the client com-
puters 20 to the server computer 10 via modems
through the telephone system acting as the central
processing facility 60. The server computer 10
receives and processes the data received from the
client computers 20 during execution of its portion
of the distributed computing function.

Server computer 10 may generate new, or
modify existing, code and/or data modules in the
data stream on the transport mechanism 30, in a
manner described below, based on that received
data. Alternatively, the server computer 10 may
immediately return information to the client com-
puters 20 in the other direction through the central
processing facility 60. The information in newly
generated code and/or data modules is processed
by all client computers 20 participating in the dis-
tributed computing function, while information
passed from the server computer 10 to the client
computers 20 through the central processing fa-
cility 60 is specifically related to the client com-
puter (22, 24, 26) to which that information was
sent.

In another embodiment, the central processing
facility 60 may include its own computer system,
separately connected by modem to both the client
computers 20 and the server computer 10 through

10

15

20

25

30

35

55

the telephone system. In either of the above em-
bodiments, the central computing facility 60 pro-
vides access to other computers or processing
facilities (not shown) via the telephone system.
Thus, if information from other computer systems
is needed to perform the distributed computing
function, those computer systems may be acces-
sed via modem through the telephone system by
either the client computers 20 or the server com-
puter 10.

An input/output (I/O) port on the client com-
puter 22 is coupled to a corresponding port on the
local computer 40. Local computer 40 is collocated
with the client computer 22. Local computer 40
may be a personal computer used by the user 80
of the client computer 22, or may be a larger
computer, or computer network located at the
same site as the client computer 22. This allows
the client computer 22 to access data on the at-
tached mass storage 70 of the personal computer
or a computer on the network located at the client
computer 22 site. In addition, the client computer
22 may use the mass storage 70 of the local
computer 40 for storage of data to be retrieved
later. It is likely that the local computer 40 will
include both an output device (not shown) such as
a computer monitor and an input device (also not
shown) such as a computer keyboard. Both of
these may be shared with the client computer 22
and/or the auxiliary data processor 50, as de-
scribed above.

For example, the distributed computing system
illustrated in Figure 1 may be part of a widespread
corporate computing system, and the server 10
may be located at a central location of that cor-
poration. The client computer 22 may be located at
a remote location, and the local computer 40 may
be coupled to the personal computer network at
that location. Workers at that location may store
shared data (e.g. financial information) on the serv-
er connected to that network. The distributed com-
puting function may include gathering local finan-
cial data from the client computers at the remote
locations, processing that financial data and return-
ing overall financial results to the client computers.
In such an application, the executable code ex-
ecuted on the client computer 22 accesses the
data from the local computer 40 (either from its
attached mass storage 70 or through the network)
through the I/O port, and sends it to the server
computer 10 through the central processing facility
60. The server computer 10 continues its process-
ing based on the information received from client
computer 22 (and other client computers 20), and
returns the results of that processing to the client
computers 20 either through the central processing
facility 60 or via the data stream on the transport
mechanism 30.

1 EP 0 680 185 A2 12

In another example, the distributed computing
system may be an interactive television system,
broadcasting a home shopping show as the distrib-
uted computing application. In such a case, the
auxiliary data carries the video and audio portion of
the television signal, which may show and describe
the items being offered for sale, and may include
both live actors and overlaid graphics generated at
the central studio. Code and data modules making
up the interactive television application may include
data about the products which will be offered for
sale during this show, or portion of the show, and
executable code to interact with the user in the
manner described below.

When a viewer wishes to order an item, a
button is pressed on the TV remote control. This
button signals the client computer 22 to display a
series of instructions and menus necessary to so-
licit the information necessary to place the order,
e.g. the item number, name and address of the
viewer, the method of payment, the credit card
number (if needed), etc. These instructions are
generated in the client computer as graphics which
are overlaid on the television video image. It is also
possible for a computer generated voice to be
generated and combined with the television audio
either by voice-over, or by replacing the television
audio. The viewer responds to the instruction by
providing the requested information via the TV re-
mote control. When the information requested by
the on-screen display and/or voice instructions has
been entered by the viewer, it is sent to a central
computer via the modem in the client computer. An
order confirmation may be sent in the other direc-
tion from the central computer.

It is also possible that permanent information
about the viewer (i.e. the name, address, method of
payment and credit card number) may be preen-
tered once by the viewsr, so it is not necessary to
solicit that information each time an order is
placed. The information is stored in permanent
memory in the client computer. In such a case,
when an order is placed, that information is re-
trieved from the permanent memory, appended to
the item number and transmitted to the central
computer. It is further possible that, by means of
time codes, or other commands, inserted into the
data stream, the client computer will know which
item is currently being offered for sale. In such a
case, the viewer will be able to order it by simply
pressing one button on the TV remote control. In
response, the client computer can combine the
previously received information related to the item
currently being offered for sale with the previously
stored personal information related to the viewer,
and transmit the order to the central computer and
receive the confirmation in return.

10

20

25

30

35

45

50

55

Because the code and data modules related to
the home shopping program are repetitively in-
serted into the data stream, a viewer may tune into
the program at any time and be able to participate
interactively. Similarly, it is not necessary for the
viewer to participate interactively, but may simply
ignore the interactive portion of the show.

It is also possible for the client computér 22 to
receive control information from the local computer
40. For example, the user 80, using the local com-
puter 40, could control the client computer 22 via
the IO port to selsct a desired one of the data
streams on transport mechanism 30, and process
the program currently being broadcast on that data
stream, with interaction with the user 80 through
the input and output devices (not shown) con-
nected to the local computer 40.

It is further possible for the user 80 to cause
the client computer 22 to access the server com-
puter 10 through the central processing facility 60,
instead of via the data stream on transport mecha-
nism 30, and receive code and data modules via
this bidirectional link.

FIGURE 2 is a block diagram illustrating a
server computer 10 as illustrated in FIGURE 1. In
FIGURE 2, a source of distributed computing ap-
plication code and data 101 includes an application
compiler, and software management module (not
shown) and has an output terminal coupled to an
input terminal of a flow builder 102. An output
terminal of flow builder 102 is coupled to an input
terminal of a transport packetizer 104. An output
terminal of transport packetizer 104 is coupled to a
first input terminal of a packet multiplexer 106. An
output terminal of packet multiplexer 106 is coup-
led to an input terminal of a transport multiplexer
110. An output terminal of transport multiplexer 110
is coupled to the physical medium making up the
transport mechanism 30 (of FIGURE 1). A second
input terminal of packet multiplexer 106 is coupled
to a source of auxiliary data packets 107. A clock
109 has respective output terminals coupled to
corresponding input terminals of the transport pac-
ketizer 104 and auxiliary data source 107. A data
transceiver 103 has an first bidirectional terminal
coupled to the central processing facility 60 (of
FIGURE 1) and a second bidirectional data coupled
to the application code and data source 101.

Application code and data source 101, flow
builder 102, transport packetizer 104, auxiliary data
source 107, clock 109 and packet multiplexer 106,
in combination, form a channel source 108 for the
transport mechanism, illustrated by a dashed box
in . Other channe! sources, including similar com-
ponents as those illustrated in channel source 108
but not shown in FIGURE 1, are represented by
another dashed box 108a. The other channel sour-
ces (108a) have output terminals coupled to other

13 EP 0 680 185 A2 14

input terminals of the transport multiplexer 110, and
may have input terminals coupled to central pro-
cessing facilities through data transceivers.

In operation, data representing the distributed
computing application program, and data related to
the transmission of the program over the transport
mechanism 30 are supplied to the flow builder 102
from the application source 101. This data may be
supplied either in the form of files containing data
representing the code and data modules, or by
scripts providing information on how to construct
the code and data modules, or other such informa-
tion. The code and data modules may be constant
or may change dynamically, based on inputs re-
ceived from the client computers 20 via the central
computing facility 60 and/or other sources. The
executable code and data module files may be
generated by a compiler, interpreter or assembler
in a known manner in response to source language
programming by an application programmer. The
data file related to the transmission of the modules
includes such information as: the desired repetition
rates for the directory and the code and data
modules to be included in the data stream; the size
of main memory in the client computers 20 re-
quired to store each module, and to completely
execute the application program; a priority level for
the module, if it is a code module, etc.

Flow builder 102 processes the data from the
application source 101. In response, flow builder
102 constructs a directory module, giving an over-
all picture of the application program. The informa-
tion in the directory module includes e.g. the iden-
tification of all the code and data modules being
repetitively transmitted in the data stream, their
size and possibly other information related to those
modules. Then the application program representa-
tive data is processed to generate the code and
data modules. The directory, code and data mod-
ules thus constructed are formatted by adding
module headers and error detection and/or correc-
tion codes to each module. A transmission sched-
ule is also generated. After this processing is com-
plete, the data representing the directory module
and the code and data modules are repetitively
presented to the transport packetizer 104 according
to the schedule previously generated.

The transport packetizer 104 generates a
stream of packets representing the directory mod-
ule and the code and data modules as they are
emitted from the flow builder 102. Each packet has
a constant predetermined length, and is generated
by dividing the data stream from the flow builder
into groups of bits, and adding a packet header
with information identifying the information con-
tained in the packet, and an error detection and/or
correction code, etc., to each group, such that each
packet is the same predetermined length. (If there

10

15

20

25

30

35

55

is insufficient data from the flow builder 102 to
completely fill a packet, the packet is padded with
null data.) These packets are time multiplexed with
the auxiliary data packets, in a known manner, to
form a single packet stream in the packet mul-
tiplexer 106. It is also possible for the generated
packets to have varying lengths. In this case, the
packet header for each packet will contain the
length of that packet. In addition, time code data
packets are placed in the data stream packets
and/or the auxiliary data packets based on data
received from the clock 109.

Packet streams from all of the channel sources
(108,108a) are multiplexed into a single transport
channel, which is transmitted through transport
mechanism 30. As described above, the packet
streams may be frequency multiplexed by having
each packet stream modulate a carrier signal at a
different frequency, with all of the carriers being
carried by a satellite link to the client computers
20, in a known manner. In addition, if there is
sufficient capacity within one carrier channel, sev-
eral packet streams may be statistically time mul-
tiplexed, and used to modulate a single carrier,
also in a known manner. For example, it has been
proposed to time multiples up to eight interactive
television data streams through a single satellite
link.

Data from the client computers 20 via the cen-
tral processing facility 60 (of FIGURE 1) is received
at the server computer 10 by the data transceiver
103, which may include its own processor (not
shown). If an immediate response is generated, the
transceiver 103 processor returns that response via
the central processing facility 60 to a specific client
computer (22-26), a specific set of the client com-
puters 20 or to all client computers 20 in their turn.
If, however, a common response to all client com-
puters 20 is desired, the application programmer
may amend the code and data files in the applica-
tion code and data source 101 using the applica-
tion compiler. These amended files are then pro-
cessed by the flow builder again to generate an-
other flow. It is further possible that the code and
data files in the application source 101 may be
amended automatically and dynamically (i.e. in real
time) in response to data received from the tran-
sceiver 103, and the flow updated as the data is
being received from the client computers 20.

FIGURE 3 is a timing diagram illustrating the
data streams produced by the server computer 10
in a distributed computing system as illustrated in
FIGURE 1. In FIGURE 3 server computer 10 is
shown as simultaneously producing a plurality of
packet streams 32-38. Each packet stream (32-38)
is shown as a horizontal band divided into packets

"having the same duration and number of bits. As

described above, it is possible that the size of the

15 EP 0 680 185 A2 16

packets within any packet stream vary with the
amount of data to be carried. In FIGURE 3 it can
be seen that the starting times of the packets are
not synchronized. it is possible to synchronize the
packets, but it in not necessary. In FIGURE 3,
packets carrying data representing directories are
designated DIR, packets carrying data representing
code modules are designated CM, packets carrying
data representing data modules are designated
DM, and packets carrying auxiliary data are des-
ignated AUX.

In the top series of packets 32, the leftmost
packet contains data representing a code module,
CM. This is followed by three packets containing
auxiliary data, AUX, followed by another packet
containing data representing the code module, CM.
From the series of packets 32 it can be seen that
the code module is repetitively produced. There
may be more or fewer packets in between succes-
sive repetitions of the code module packets CM.
The rate of repetition may be specified by the
programmer when the application is programmed,
and may be varied during the execution of the
application.

In the next series of packets 34, the leftmost
packet contains auxiliary data, AUX. The next two
packets contain respective portions of a code mod-
ule (CM1,CM2). The last packet contains auxiliary
data, AUX. From the series of packets 34 it can be
seen that if a code module is too large to be
contained in a single packet, it may be carried by
more than one, with each packet containing a por-
tion of the code module. Although two packets are
illustrated in the series of packets 34 as containing
the code module (CM1,CM2), any number of pack-
ets may be used to carry the code module, de-
pending upon its size. The two packets carrying
the code module, (CM1,CM2) are repetitively trans-
mitted (not shown) in the series of packets 34, as
described above.

In the series of packets 36, the leftmost packet
contains data representing a code module (CM).
The next packet (DM1) is a first packet containing
data representing a data module. The next packet
contains auxiliary data, AUX. The next packet
(DM2) is a second packet containing the remaining
data representing the data module. From the series
of packets 36 it may be seen that a data module
(DM1,DM2), associated with the code module
(CM), may also be included in the packet stream.
Both the code module (CM) and the data module
(DM1,DM2) are repetitively transmitted (not shown)
in the series of packets 36. The rate of repetition of
the code module (CM) may be different from that
of the data module (DM1,DM2), and both rates may
be specified by the application programmer and
varied during the execution of the application.

10

15

20

25

30

35

45

50

55

It may further be seen that if the data module
is too large to be contained in a single packet, it
may be carried by more than one packet, with
each packet containing a portion of the data mod-
ule. Although two packets are illustrated in the
series of packets 36 as containing the data module
(DM1,0M2), any number of packets may be used
to carry the data module, depending upon its size.
It may be further seen that the packets carrying the
data module need not be transmitted sequentially,
but may have intervening packets in the packet
stream. The same is true for multiple packets car-
rying a code module or directory module (not
shown).

In the bottommost series of packets 38, the
leftmost packet contains data representing the di-
rectory (DIR). The next packet contains data repre-
senting a code module (CM), followed by a packet
containing auxiliary data (AUX) and a packet con-
taining data representing.a data module (DM). In
the series of packet 38 all of a directory module
(DIR), a code module (CM) and a data module
(DM) in a single packet stream may be seen. The
respective repetition rates of these three modules
may be different, as specified by the programmer
of the application, and may be varied during the
execution of the application.)

FIGURE 4 is a block diagram of a client com-
puter 22 as illustrated in FIGURE 1. in FIGURE 4,
transport mechanism 30 (of FIGURE 1) is coupled
to an input terminal of a stream selector 202. An
output terminal of stream selector 202 is coupled to
respective input terminals of an auxiliary data ex-
tractor 204 and a packet data extractor 206. An
output terminal of auxiliary data extractor 204 is
coupled to the auxiliary data processor 50 (of FIG-
URE 1). A bidirectional terminal of packet data
extractor 206 is coupled to a corresponding termi-
nal of a stream /O adapter 208. A control output
terminal of stream |/O adapter 208 is coupled to a
corresponding control input terminal of stream se-
lector 202. The combination of stream selector 202,
auxiliary data extractor 204 and packet data extrac-
tor 206 form a data stream receiver 207 for client
computer 22, illustrated by a dashed line in FIG-
URE 4.

Stream /O adapter 208 forms a part of a
processing unit 224 in client computer 22, illus-
trated by a dashed line in FIGURE 4. In addition to
the stream I/O adapter 208, processing unit 224
includes a processor 210, read/write memory
(RAM) 212 and read-only memory (ROM) 214
coupled together in a known manner via a system
bus 216. Further input and output facilities are
provided by an I/O port 218, coupled to the local
processor 40 (of FIGURE 1); user /O adapter 220,
for communicating with user 80; and modem 222,
coupled to the central processing facility 60 (of

17 EP 0 680 185 A2 18

FIGURE 1); all also coupled to the system bus 216
in a known manner. Other adapters (not shown)
may be coupled to system bus 216 to provide
other capabilities to the processing unit 224.

As described above, auxiliary data extractor
204, /O port 218 and modem 222 are not required
in a client computer 20 according to the present
invention. They are illustrated in FIGURE 1 and
FIGURE 4 to show optional additional functionality.

In operation, processor 210 of processing unit
224 retrioves program instructions permanently
stored in ROM 214, or temporarily stored in RAM
212, and executes the retrieved instructions to read
data from ROM 212 and/or RAM 214, write data to
RAM 212 and/or receive data from or supply data
to outside sources via the /O port 218, user I/O
adapter 220 and/or modem 222, in a known man-
ner. Under program control, processor 210 may
also request a code and/or data module from the
data stream supplied to the client computer 22 via
the transport mechanism 30 (of FIGURE 1). To
retrieve this data, processor 210 first instructs
stream I/0 adapter 208 to send a selection control
signa! to the stream selector 202, possibly in re-
sponse to user input from user /O adapter 220.
Then processor 210 issues a request for a specific
code or data module to the stream 1/0 adapter 208.
Stream /O adapter 208 relays this request to the
packet data extractor 204.

Transport mechanism 30 (of FIGURE 1) sup-
plies all of the plurality of packet streams (32-38 of
Figure 3) it carries to the stream selector 202,
which passes only the selected packet stream.
Auxiliary data extractor 204 monitors the selected
packet stream, extracts the auxiliary data packets
from it and supplies them directly to the auxiliary
data processor 50 (of FIGURE 1). Packet data
extractor 206 similarly monitors the selected packet
stream, extracts the directory, code and/or data
module packets requested by the stream I/O adapt-
er 208 and supplies them to the stream /O adapter
208. The data in the packets returned to the stream
IO adapter 208 is supplied to the RAM 212. When
the entire module has been retrieved from the
packet stream (which may require several packets,
as described above), processor 210 is notified of
its receipt by the stream I/O adapter 208. Proces-
sor 210 may then continue execution of its pro-
gram.

The data stream in a distributed computing
system illustrated in FIGURE 1 is similar to a mass
storage system in prior art systems. An application
program executing on the processor 210 makes a
request for a module listed in the directory in the
same manner that such a program would make a
request for a file containing a code or data module
previously stored on a mass storage device in a
prior art system. The data stream receiver 207 is

10

15

20

25

35

55

10

similar to a mass storage device, and stream /O
208 acts in a similar manner to a mass storage
adapter on a prior art system by locating the de-
sired data, transferring it to a predetermined loca-
tion (/O buffer) in the system memory and inform-
ing the processor of the completion of the retrieval.
However, the stream VO adapter 208 can only
retrieve code and data from the data stream; data
cannot be written to the data stream.

As described above, the distributed computing
application may be divided into more than one
code module, each containing executable code for
a different portion of the distributed computing ap-
plication. When a particular code module is de-
sired, processor 210 requests that code module
from stream /O adapter 208. When execution of
that module has completed, processor 210 re-
quests the next module from stream /O 208. Be-
cause code and data modules are repetitively car-
ried on the data stream, a module may be deleted
from RAM 212 when it is not currently needed
without the necessity of temporarily being stored,
because if it is required later, it may again be
retrieved from the data stream when needed. How-
ever, if RAM 212 has sufficient capacity, processor
210 may request stream I/O adapter to simulta-
neously load several code modules into RAM 212.
If this can be done, then processor 210 may switch
between code modules without waiting for stream
/O adapter 208 to extract them from the data
stream.

As described above, other I/O adapters may be
coupled to the system bus 216 in a known manner.
For example, in an interactive TV system, a graph-
ics adapter may be coupled to system bus 216.
The graphics adapter generates signals represent-
ing graphical images, in a known manner, in re-
sponse to instructions from the processor 210. Fur-
ther, these signals may be combined with the stan-
dard video signal produced by the video decoder
(described above) in the auxiliary data processor
50 of an interactive TV system. When the graphical
image representative signal and the standard video
signal are combined, the resulting signal represents
an image in which the image generated by the
graphics adapter is superimposed on the image
represented by the broadcast video signal. It is
also possible to selectively combine these two im-
age representative signals under the contro! of the
processor 210.

An interactive TV system, may also include a
sound adapter coupled to the system bus 216. The
sound adapter generates a signal representing a
computer generated sound (such as music, syn-
thesized voice or other sound), in a known manner,
in response to instructions from the processor 210.
Further, these signals may be combined with the
standard audio signal produced by the audio de-

19 EP 0 680 185 A2 20

coder (described above) in the auxiliary data pro-
cessor 50 of an interactive TV system. When the
sound representative signal and the standard audio
signal are combined, the resulting signal represents
the combination of the sound generated by the
sound adapter and the broadcast audio signal. It is
also possible to selectively combine these two
sound representative signals under the control of
the processor 210.

The timing of the generation and display of the
graphical image and sound representative signals,
may be controlled by receipt of the time code data
from the data stream. This enables an executable
code module to synchronize the display of proces-
sor generated image and presentation of processor
generated sound to the broadcast video and audio.
It is further possible to synchronize the operation of
the interactive TV application by the insertion of
specialized packets into the data stream which
cause an interrupt of the code currently executing
in processor 210. Stream I/0 208 monitors the data
stream for such specialized packets, and generates
an interrupt, in @ known manner, for the processor
210. Processor 210 responds to that interrupt, also
in known manner, by executing an interrupt service
routine (ISR). This ISR may be used for synchro-
nization of the interactive TV application, or other
purposes.

A client computer 22 in a distributed computing
system as illustrated in FIGURE 1 does not need a
mass storage device, nor a large amount of RAM
212. Such a system decreases the cost of a client
computer, and increases the functionality of the
lower cost client computers. In addition, such a
client computer has the option of participating in a
distributed computing function, may join in the dis-
tributed computing function at any time (or may
drop out and return later), and may participate at
its own pace.

Claims

1. A distributed computer system characterized
by:

a source (10) of a continuous data stream
repetitively including data representing a dis-
tributed computing application; and

a client computer (20), receiving (207) the
data stream, extracting (206) the distributed
computing application representative data from
the data stream, and executing (224) the ex-
tracted distributed computing application.

2. The computer system of claim 1, further char-
acterized by an auxiliary data processor;
wherein:

the data stream source produces the data
stream further including auxiliary data; and

10

20

25

30

35

45

50

55

11

the client computer extracts the auxiliary
data from the data stream and supplies it to
the auxiliary data processor.

The computer system of claim 2, characterized
in that:

the data stream source produces the data
stream in the form of a series of packets;

a first one of the series of packets contains
data representing the distributed computing
application and includes identification informa-
tion indicating that the first one of the series of
packets contains data representing the distrib-
uted computing application; and

a second one of the series of packets
contains auxiliary data and includes identifica-
tion information indicating that the second one
of the series of packets contains auxiliary data.

The computer system of claim 1, characterized
in that:

the data stream source simultaneously
produces a plurality of continuous data
streams, each repetitively including data repre-
senting a respective distributed computing ap-
plication; and

the client computer further includes a data
receiver for selectively receiving one of the
plurality of data streams, and extracting the
distributed computing application representa-
tive data included in the selected one of the
data streams.

The computer system of claim 4, further char-
acterized by an auxiliary data processor;
wherein:

the data stream source produces the data
stream further including auxiliary data; and

the client computer extracts the auxiliary
data from the data stream and supplies it to
the auxiliary data processor.

The computer system of claim 4, characterized
in that:

the data stream source produces the data
stream in the form of a series of packets;

a first one of the series of packets contains
data representing the executable code module
and includes identification information indicat-
ing that the first one of the series of packets
contains data representing the executable code
module;

a second one of the series of packets
contains data representing the data module
and includes identification information indicat-
ing that the second one of the series of pack-
ets contains data representing the data mod-
ule; and

21 EP 0 680 185 A2 22

a third one of the series of packets con-
tains auxiliary data and includes identification
information indicating that the third one of the
series of packets contains auxiliary data.

The computer system of claim 6, characterized
in that:

the data stream source produces the data
stream further including a directory module
containing information related to the code
module; and

the client computer first extracts the direc-
tory module from the data stream, then ex-
tracts the code module in response to the
information related to the code module in the
extracted directory module, and executes the
extracted code module.

The computer system of claim 1, characterized
in that:

the data stream source produces the data
stream in the form of a series of packets;

a first one of the series of packets contains
data representing the executable code module
and includes identification information indicat-
ing that the first one of the series of packets
contains data representing the executable code
module;

a second one of the series of packets
contains data representing the data module
and includes identification information indicat-
ing that the second one of the series of pack-
ets contains data representing the data mod-
ule;

a third one of the series of packets con-
tains data representing the directory module
and includes identification information indicat-
ing that the second one of the series of pack-
ots contains data representing the directory
module; and

a fourth one of the series of packets con-
tains auxiliary data and includes identification
information indicating that the third one of the
series of packets contains auxiliary data.

The computer system of claim 8, characterized
in that:

the data stream source produces the data
stream further including a data module and a
directory module further contains information
related to the data module; and

the client computer further extracts the
data module from the data stream in response
to the information related to the data module in
the extracted directory module and executes
the extracted code module to process the ex-
tracted data module.

10

20

25

30

35

55

12

10.

1.

12

13.

14.

In a distributed computer system, a client com-
puter (22), characterized by:

an input terminal (30), for receiving a con-
tinuous data stream repetitively including data
representing a distributed computing applica-
tion

a data stream receiver (207), coupled to
the input terminal, for receiving the data
stream and extracting (206) the distributed
computing application representative data; and

a processing unit (224), coupled to the
data stream receiver, for receiving and execut-
ing (210) the distributed computing application.

The client computer of claim 10, characterized
in that the processing unit comprises:

a system bus;

read/write memory, coupled to the system
bus;

a data stream input/output adapter, coup-
led between the data stream receiver and the
system bus, for receiving the extracted distrib-
uted computing application representative data
from the data stream receiver, and storing it in
the read/write memory; and

a processor, coupled to the system bus for
executing the distributed computing application
stored in the read/write memory.

The client computer of claim 10, characterized
in that:

the input terminal receives the data stream
as a series of packets containing packets car-
rying the distributed computing application re-
presentative data; and

the data stream receiver comprises a
packet data extractor, coupled to the input
terminal, for extracting the packets carrying the
distributed computing application representa-
tive data.

The client computer of claim 12, characterized
in that:

the series of packets in the data stream
further include packets carrying auxiliary data;

the client computer further includes an
auxiliary data processor; and

the data stream receiver comprises an
auxiliary data packet extractor, coupled to the
auxiliary data processor, for extracting the
packets carrying the auxiliary data from the
data stream and supplying them to the auxil-
iary data processor.

The client computer of claim 13, characterized
in that the distributed computing system is an
interactive television system, and the auxiliary
data is television video and audio.

15.

16.

17.

18.

23 EP 0 680 185 A2 24

The client computer of claim 10, characterized
in that:

the input terminal receives a plurality of
data streams, each including data representing
a respective distributed computing application;
and

the data stream receiver comprises:

a data stream selector, coupled to the in-
put terminal, for producing a selected one of
the plurality of data streams in response to
control signals from the processing unit; and

a distributed computing representative
data extractor, coupled between the data
stream selector and the processing unit, for
extracting the distributed computing application
representative data from the selected one of
the plurality of data streams.

The client computer of claim 15, characterized
in that:

the data stream selector comprises a se-
lection control input terminal, and produces the
selected one of the plurality of data streams in
response to a control signal at the selection
control input terminal;

the processing unit comprises:

a system bus;

read/write memory, coupled to the system
bus;

a data stream input/output adapter, coup-
led between the data stream receiver and the
system bus, for receiving the extracted distrib-
uted computing application representative data
from the data stream receiver, and storing it in
the read/write memory, and having a control
output terminal coupled to the selection control
input terminal of the data stream selector, for
producing the selection control signal; and

a processor, coupled to the system bus,
for controlling the data stream input/output de-
vice to generate a selection control signal se-
lecting a specified one of the plurality of data
streams, and for executing the distributed
computing application stored in the read/write
memory.

The client computer of claim 10, characterized
in that:

the input terminal receives the distributed
computing application representative data in-
cluding an executable code module;

the data stream receiver extracts the ex-
ecutable code module; and

the processing unit executes the extracted
code module.

The client computer of claim 17, characterized
in that:

15

20

25

30

35

45

50

55

13

19.

20.

the input terminal receives the distributed
computing application representative data fur-
ther includes a directory module containing
information related to the executable code
module; and

the data stream receiver first extracts the
directory module from the data stream;

the processing unit then processes the in-
formation related to the executable code mod-
ule in the directory modulse;

the data stream receiver then extracts the
executable code module from the data stream
based on the information related to the execut-
able code module in the extracted directory
module; and

the processing unit then executes the ex-
tracted executable code module.

The client computer of claim 18, characterized
in that:

the distributed computing application re-
presentative data further includes a data mod-
ule and the directory module further contains
information related to the data module;

the processing unit further processes the
information related to the data module in the
directory module;

the data stream receiver further extracts
the data module from the data stream based
on the information related to the data module
in the extracted directory module; and

the processing unit executes the extracted
code module to process the extracted data.

The client computer of claim 10 characterized
in that the distributed computing application is
divided into a plurality of modules, represent-
ing portions of the application, and the pro-
cessing unit stores only modules of said plural-
ity of modules, necessary to execute the cur-
rent portion of the application.

EP 0 680 185 A2

10

N SERVER

FIG. 1

14

EP 0 680 185 A2

108~
- —I1Q; T T T T
L APPU FLOW ‘TRANSPORT | 10
SORGE ' BULDER [PACKETIZER =
108~ AUX
cL | DATA
SOURCE
CaEESS $z S 2z a2 A Tu—— -/— — ——
l ~103 110
DATA TRANSPORT
TRANSCEIVER . Mecgsmsu
CENTRAL
moc:osson
[_ —_ — o8 —_
L
| FIG. 2
..
Jf'& I AUX 1T A | ADX T ™M)
|
o AT AR] GH | o8 | AX 1)
/ []
SERVER .
N lasx :
I oM [O AUX T bw2)
|
C 1T __OoR [od [A T oM [)
+—st

15

EP 0 680 185 A2

SPORT 0N e — — 5. — OATA
TRAN = —
vECiANGd [2N T X | PROCESSOR
30 STREAM OATA .
SELECTOR[™ 208~4 extracT | |
. PACKET LOCAL
DATA PROCESSOR
| E T | w0
24~ | == = _— = = e —
-~ 206~ i —
STREAM)
| o PORT |
218
i m T — |
PROCESSOR RAM ROM USER | MODEM
| — —F — g |
2
CENTRAL
PROCESSOR
FIG 4 80
USER
80

16

EP 0680 185 A3

(19) -o)

Europadisches Patentamt
European Patent Office

Office européen des brevets

ERRCR M RRRAIUFACERRAANI

(1) EP 0680 185 A3

(12) EUROPEAN PATENT APPLICATION

(88) Date of publication A3:
02.05.2002 Bulletin 200218

(43) Date of publication A2:-
02.11.1995 Bulletin 1995/44

(21) Application number: 95105803.1

(22) Date of filing: 19.04.1995

(51) tci.”: HO4L 29/06, HO4N 7/24,

GO6F 9/445

(84) Designated Contracting States:
DEESFRGBIT

(30) Priority: 28.04.1994 US 233908

(71) Applicant: OpenTYV, Inc.
Mountain View, CA 94043 (US)

(72) Inventors:
* Joseph, Kuriacose
Plainsboro, New Jersey 08543 (US)

* Dureau, Vincent

Venice, California 80291 (US)
¢ Jessup, Ansley Wayne, Jr.
Willingboro, New Jersey 08046 (US)
Delpuch, Alain
Los Angeles, California 30064 (US)

(74) Representative: Freeman, Jacqueline Carol et al

W.P. THOMPSON & CO.
Celcon House

289-293 High Holborn
London WC1V 7HU (GB)

(54) A distributed computer system

(57) A distributed computer system is disclosed
which comprises a source (30) of a continuous data
stream repetitively including data representing a distrib-
uted computing application and a client computer (22),

receiving the data stream, for extracting (207) the dis-
tributed computing application representative data from
the data stream, and executing (224) the extracted dis-
tributed computing application.

24 __

TRANSPORT [5~ e — — g — OATA
Ve s | PROCESSOR
lsa.scron“ a5 N, "l‘——'
l "oATA PSS sS0n
e, em— ——— —— —— ——— J
[t D "":-d‘-'ff—‘ - = ‘m«F - M
. STREAM vo
| | vo PORT |
I - ;;\[IW l
| — — — 77 =
2
CENTRAL
PROCESBOR
FG 4 50
} USER
| 8

Printed by Jouve, 75001 PARIS (FR)

EP 0680 185 A3

) European PHten! EYROPEAN SEARCH REPORT Appication wumber
Office EP 95 10 5803
DOCUMENTS CONSIDERED TO BE RELEVANT
Category Chtation of document with indication, where appropriate, Relevant CLASBIFCATION OF THE
of relevant passages 10 clalm APPLICATION (Int.Ql.5)
X US 5 251 301 A (COOK GARY M) 1-6, HO4L29/06
5 October 1993 (1993-10-05) 10-17,20{ H04N7/24
= abstract » 606F9/445

* column 1, 1ine 62 — column 2, line 54 *
= column 3, line 5 - line 48 »

A * column 4, line 57 - column 8, line 11; |7-9,18,
figure 3 * 19

* claims 1,6-10 *

X EP O 306 208 A (OLIVETTI & CO SPA ;RAI 1,2,4,5,
RADIOTELEVISIONE ITALIANA (IT)) 10-13,

8 March 1989 (1989-03-08) 15-20

* abstract =

* page 2, column 1, line 53
line 26 *

* page 4, column 5, line 45 - column 6,
line 45 *

* page 5, column 8, line 30 - page 6§,
column 9, line 28 »

column 2,

* page 7, column 11, line 3 - column 12,
line 4 % TECHNICAL RELDS
* page 9, column 15, line § - line 16 * SEARCHED _(m49
* page 11, column 19, line 55 - column 12, HO4L
1ine 22; figure 51 = HO4N
* figure 3 = GO6F
X US 5 299 197 A (SCHLAFLY ROGER) 1-6,
29 March 1994 (1994-03-29) 10-13,
15-17,20
* column 2, 1ine 34 - line 57 *
* column 3, line 34 - line 42 *
* column 4, line 11 - line 47 *
The presant ssarch report has been drewn up for afl laims
- Piaoe of search Dete of complition of the search Examinor
g THE HAGUE 6 March 2002 Karavassilis, N
Y CATEGORY OF CITED DOCUMENTS T : theory or principie underlying the invention
8 X: larty relevard @ taken alom E:z?mpﬁmgmmwnmdmu
§ v’mlwmummmm: D:mm?éalnmwmon
z Am;’m L : document ciied for other reasons
2 ' non—wrttien 4 : member of the same pa‘ent famity, coresponding
9 P : imermediata documernt docyment

EPO FORM PO4BQ

EP 0 680 185 A3

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 95 10 5803

This annex lists the patent tamily members 10 tha patant documents ched in the above—mentioned European search report.
The members we as conteined in the European Patent Office EDP flle on
The European Patent Office Is In no way Bablo for these particutars which aro meéroly gven for the purposs of information.

06—03-2002
Patent document Publication Patent tamily Publication
cited in segarch report dats member(s) date
US 5251301 A 05-10-1993 US 4920503 A 24-04-1990
EP 0306208 A 08-03-1989 IT 1211278 B 12-10-1989
EP 0306208 A2 08-03-1989

Us 5299197 A 29-03-1994 NONE

For more details about this annex :see Officlal Joumnal of the European Patent Office, No. 12/82

This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original
documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

J BLACK BORDERS

UJ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

%:ED TEXT OR DRAWING

(] BLURRED OR ILLEGIBLE TEXT OR DRAWING

(U SKEWED/SLANTED IMAGES

(J COLOR OR BLACK AND WHITE PHOTOGRAPHS

(J GRAY SCALE DOCUMENTS

(U LINES OR MARKS ON ORIGINAL DOCUMENT

U] REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

U] OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image

problems checked, please do not report these problems to
the IFW Image Problem Mailbox.

	2002-06-25 Foreign Reference

